Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Reena Ittyachan, ${ }^{\text {a }}{ }^{*}$ P. Sagayaraj ${ }^{\text {a }}$ and Babu Kothandapani ${ }^{\text {b }}$

${ }^{\text {a Department of Physics, Loyola College, }}$ Chennai 600 034, India, and ${ }^{\text {b }}$ Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai 600 036, India

Correspondence e-mail:
ireenafcc@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.132$
Data-to-parameter ratio $=7.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

l-Argininium bis(dihydrogen phosphate)

In the crystal structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, the argininium residue has a gauche II-trans-trans-trans conformation. The argininium residue forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the phosphate anions; the latter form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with each other. Three-centered hydrogen bonding is also observed.

Comment

Arginine is known to possess non-linear optical properties (Jiang et al., 1983). The crystal structure of L-arginine dihydrate (Karle \& Karle, 1964), L-arginine chloride (Mazumdar et al., 1969), L-arginine hydrochloride monohydrate (Dow et al., 1970), L-arginine phosphate monohydrate (Aoki et al., 1971), L-arginine perchlorate (Monaco et al., 1987; Srinivasan \& Rajaram, 1997) and L-arginine diarsenate (Zalkin et al., 1989), L-argininium dinitrate (Ramaswamy et al., 2001) and a triclinic polymorph of L-argininium chloride (Sridhar et al., 2002) have been reported. In the present study, the crystal structure of L argininum bis(dihydrogen phosphate), (I), has been determined.

The asymmetric unit of (I) contains one argininium residue and two dihydrogen phosphate anions. The $\mathrm{C}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles clearly show the presence of the COOH group. Futhermore, the guanidyl group is protonated to form a guanidinium ion. The backbone conformation angles, χ^{1} and χ^{2}, are in cis and trans forms, respectively. The side-chain angle ψ^{1} has the most favoured gauche II conformation, while the other three conformation angles ψ^{2}, ψ^{3} and ψ^{4} have the trans-trans-trans form. The $\mathrm{P}-\mathrm{O}$ distances agree well with the values for normal single- and double-bond distances (Table 1).

The phosphate anions play a vital role in forming hydrogen bonds with the argininium residue and with each other (Table 2). All the phosphate O atoms are involved in hydrogen bonding. Interestingly, three-centered hydrogen bonding is observed, involving the $\eta^{1} \mathrm{~N}$ atom (N 3) and phosphate O atoms.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of L -arginine and orthophosphoric acid in a stoichiometric ratio of 1:2.

Received 11 April 2003 Accepted 25 April 2003 Online 31 May 2003

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} .2 \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
$M_{r}=370.20$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.9910$ (2) A
$b=9.6760(5) \AA$
$c=21.735$ (2) \AA
$V=1470.26(16) \AA^{3}$
$Z=4$
$D_{x}=1.672 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.367, T_{\text {max }}=0.519$
1567 measured reflections 1567 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.132$
$S=1.27$
1567 reflections
216 parameters
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.2-23.8^{\circ}$
$\mu=3.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

1548 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=67.9^{\circ}$
$h=-8 \rightarrow 0$
$k=-11 \rightarrow 0$
$l=-26 \rightarrow 0$
2 standard reflections frequency: 60 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1002 P)^{2}\right. \\
& \quad \quad+0.2388 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.82 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL } 97 \\
& \text { Extinction coefficient: } 0.047(3) \\
& \text { Absolute structure: } \\
& \text { Flack parameter }=0.03(1983)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P1-O3	$1.504(3)$	P2-O8	$1.508(2)$
P1-O4	$1.515(3)$	P2-O9	$1.564(3)$
P1-O5	$1.561(3)$	P2-O10	$1.573(3)$
P1-O6	$1.565(3)$	O1-C1	$1.307(5)$
P2-O7	$1.503(3)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.208(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-2.8(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-174.3(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-61.3(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6$	$149.0(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-171.2(3)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 4$	$-170.2(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {i }}$	$0.79(5)$	$1.85(5)$	$2.637(4)$	$172(5)$
$\mathrm{O} 6-\mathrm{H} 6 \cdots 4^{\text {ii }}$	$0.91(6)$	$1.69(5)$	$2.564(4)$	$159(5)$
$\mathrm{O} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iii }}$	$1.18(5)$	$1.39(5)$	$2.518(4)$	$157(5)$
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.77(7)$	$1.94(8)$	$2.610(4)$	$145(7)$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	0.82	1.76	$2.566(4)$	169
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {v }}$	0.89	2.01	$2.732(4)$	137
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {v }}$	0.89	2.05	$2.895(4)$	159
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots 8^{\text {vi }}$	0.89	2.04	$2.911(4)$	165
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 10^{\text {iii }}$	0.86	2.35	$3.077(5)$	142
$\mathrm{~N} 3-\mathrm{H} 3 C \cdots \mathrm{O} 9^{\text {vii }}$	0.86	2.16	$2.981(4)$	158
$\mathrm{~N} 3-\mathrm{H} 3 D \cdots \mathrm{O} 7^{\text {viii }}$	0.86	2.41	$3.158(5)$	146
$\mathrm{~N} 3-\mathrm{H} 3 D \cdots \mathrm{O} 10^{\text {viii }}$	0.86	2.47	$3.237(5)$	150
$\mathrm{~N} 4-\mathrm{H} 4 C \cdots \mathrm{O} 3$	0.86	2.13	$2.914(5)$	152
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots \mathrm{O} 7^{\text {viii }}$	0.86	2.17	$2.977(5)$	155

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (iv) $\frac{3}{2}+x, \frac{1}{2}-y, 1-z ;(\mathrm{v}) \frac{1}{2}+x, \frac{1}{2}-y, 1-z ;$ (vi) $1+x, y-1, z ;\left(\right.$ vii) $\frac{5}{2}-x, 1-y, \frac{1}{2}+z ;$ (viii) $\frac{3}{2}-x, 1-y, \frac{1}{2}+z$.

The H atoms of the phosphate anions were located in difference Fourier maps and refined isotropically. All other H atoms were placed

Figure 1

A view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram of the title compound, viewed down the b axis.
in geometrically calculated positions and included in the refinement in the riding-model approximation, with $U_{\text {iso }}$ values set at $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

We sincerely thank Dr Babu Varghese, RSIC, IIT, Chennai, for help offered in the structural analysis.

References

Aoki, K., Nagano, K. \& Iitaka, Y. (1971). Acta Cryst. B27, 11-23.
Dow, J., Jensen, L. H., Mazumdar, S. K., Srinivasan, R. \& Ramachandran, G. N. (1970). Acta Cryst. B26, 1662-1671.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jiang, M., Xu, D. \& Tan, Z. (1983). Abstracts of the VIIth International Conference on Crystal Growth, p. 2.67, Stuttgart, Germany.
Karle, I. L. \& Karle, J. (1964). Acta Cryst. 17, 835-841.
Mazumdar, S. K., Venkatesan, K., Mez, H. C. \& Donohue, J. (1969). Z. Kristallogr. 130, 328-339.
Monaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimerl, D. \& Zalkin, A. (1987). J. Cryst. Growth, 85, 252-255.

organic papers

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ramaswamy, S., Sridhar, B., Ramakrishnan, V. \& Rajaram, R. K. (2001). Acta Cryst. E57, o872-o874.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Spek, A. L. (1999). PLATON for Windows. Utretcht University, The Netherlands.
Sridhar, B., Srinivasan, R. \& Rajaram, R. K. (2002). Acta Cryst. E58, o747o749.
Srinivasan, N. \& Rajaram, R. K. (1997). Z. Kristallogr. 212, 311-312.
Zalkin, A., Eimeral, D. \& Velsko, S. P. (1989). Acta Cryst. C45, 812-813.

